

L2200	100	250	slices per CLB				4-1nput 178,176	2 Per Slice	2 slices per CLE	$\begin{gathered} \text { 18k bits per block } \\ \hline 6,193,152 \\ \hline \end{gathered}$		$\begin{array}{r}\text { DSP48 } \\ \hline 196\end{array}$	DCMs, PMCDs 2, 8	$\frac{\text { BUFGs }}{32}$	$\begin{gathered} \text { Max } 1 / 0 \\ 960 \end{gathered}$	$\begin{gathered} \text { diff pairs } \\ 480 \end{gathered}$	Rocket loos.	$\begin{aligned} & \text { PPCS } \\ & 0 \end{aligned}$	EmACs
			4 slices per CLB				4-1nput	${ }_{2}^{2 \text { per Slice }}$	$\begin{array}{r} \hline 2 \text { slices per CLB } \\ 393,216 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 18 \mathrm{k} \text { bits per block } \\ 5,898,240 & 320 \\ \hline \hline \end{array}$		$\begin{array}{\|c\|} \hline \text { DSP48 } \\ \hline 8 \mid 512 \\ \hline \hline \end{array}$	$\frac{\text { DCMs, PMCDS }}{8,4}$	$\begin{aligned} \hline \text { BUFGS } \\ 32 \end{aligned}$	$\begin{aligned} & M_{640} 1 / 0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { diff pairs } \\ 320 \end{gathered}$	Rocket loss	${ }^{\text {PPCS }}$	EMACS
SX55	100	250	128	x	48	24,576	49,152												
			4 slices per CLB				4-Input	2 per Slice	2 slices per CLB	18 k bits pe	block	DSP48	DCMs, PMCDs	BUFGS	Max l/O	diff pairs	Rocket l/Os	PPCS	MACs
F×60	100	250	128	\times	52	25,280	50,560	50,560	404.480	4.276,224	232	2.128	12,8	32	576	288	12 or 16	2	4
X140	100	250	192	x	84	63,168	126,336	126,336	1,010,688	10,174,464	552	192	20,8	32	896	448	24	2	

-Area Group Overview

- Slice level control to frame level control
-Different level of control
-Timing impact for designs with large number of voters
-Assign Area Group
-By instance name with wild card
INST "*_TRO" AREA_GROUP = "AG_TRO";
-By clocking source: only capture synchronous elements
-TIMESPEC TS_clkin_TR0=PERIOD "clkin_TR0" TS_clkin_TRO;
-TIMEGRP "clkin_TRO" AREA_GROUP = "clk_TRO_AG";
-Range Assignment
- No range assignment simply default to slice level control -Could increase routing time. Skip for design with lots of voters -AREA_GROUP "AG_TR0" RANGE=SLICE_X0Y0:SLICEX16Y16;

Close Attribute

-Could increase routing time
-Avoid for clocking source based area group -Example
AREA_GROUP "AG_TRO" PLACE=CLOSED; AREA_GROUP "AG_TRO" GROUP=CLOSED

V4 Specific Primitives Usage Consideration

Primitives	Usage Consideration
SRL16	1. Must enable GLUT_MASK
LUTRAM	2. Constant data flush
IIFO	1.

SRL16	1.	Must enable GLUT_MASK
LUTRAM	2.	Constant data flush

FIFO

Half Latch

Empty and Full flag issues
Check Xilinx solution 22462

1. No stuck error
2. Alternative dedicated posts
a.Set XIL_MAP_RETAIN_CONSTANT_FF_CTL
b.Set XIL PAR VCC HARD1 ONLY

DCM	1. Must disable GLUT_MASK

	2. Phase shaft for divided out
DCI	1. IO or bank wide failure

\qquad
a.Stuck failure with Continuous and Freeze

IDELAY \quad 2. Robustness: As required, Continuous, Freeze IDELAY CTL 1. One IDELAY_CTL per bank \begin{tabular}{l|l}
IDELAY_CTL \& 2. Single point, bank wide fallur

\hline STARTUP \& 1. Ground CLK, GSR GTS

STARTUP \& 1. Ground CLK, GSR, GTS
\end{tabular}

-Regional GLUT_MASK control to be supported in future software
-Dedicated TIEOFF site support
-ISE: 9.2isp3
-TMRTool: TBD
-XST:
-Change FSM Encoding Algorithm to "Sequential"
-Enable Safe Implementation
-MAP:
-Disable global optimization (default)

General Design Considerations

-TMRTool User Guide
-Selection IO mitigation
-DCM divided clock phase matching challenge
-Asynchronous elements
-Finite State Machine implementation impact - Timing

- Simulation and hardware verification and many others

Power Saving

-TMR typically equates to 3X power consumption Power Reduction option available for XST, Map, and PAR
-Average of 10~15\% power reduction
-Minimize net capacitance

- Optimize net capacitance routing for non timing critical nets
-Reprogram LUT to lower internal toggle
-May decrease design footprint as shorter routes are used
-Future Improvements
- Clock Power reduction
-Power aware clustering

