Virtex-4 FPGA SEU Mitigation Design Consideration

Chen Wei Tseng, Carl Carmichael, Michelle Fernandez, Brian Philofsky, and Gary Swift 1Xilinx

The Virtex-4 QV advantages

				# of	#01	#01	Distribute	ed RAM	Block	# of	# 01	# of DCMs/DLLs,	# 01	# 01	# of Max	# 01	# OT	# 01
Device	SEL	TID	CLB Array	Slices	LUTs	FFs	bit	S	RAM	Blocks	Multipliers	PMCDs, PLLs	BUFGs	Max I/O	diff pairs	Rocket I/Os	PPCs	EMACs
VIRTEX	MeV- cm2/mg	krad																
	CITE/IIIg	Kida																
			4 slices per CL	.B	4-Input 2	per Slice	2 slices p	er CLB	18k bits p	er block	DSP48	DCMs, PMCDs	BUFGs	Max I/O	diff pairs	Rocket I/Os	PPCs	EMACs
LX200	100	250	192 x 116	89,088	178,176	178,176	1	,425,408	6,193,152	336	1 96	12,8	32	960	480	0	0	0
			4 slices per CL		4-Input 2	per Slice			18k bits p		DSP48	DCMs, PMCDs	BUFGs	Max I/O	diff pairs	Rocket I/Os	PPCs	EMACs
SX55	100	250	128 x 48	24,576	49,152	49,152		393,216	5,898,240	320	8 512	8,4	32	640	320	0	0	0
			4 slices per CL	.В	4-Input 2	per Slice	2 slices p	er CLB	18k bits p	er block	DSP48	DCMs, PMCDs	BUFGs	Max I/O	diff pairs	Rocket I/Os	PPCs	EMACs
FX60	100	250	128 x 52	25,280	50,560	50,560		404,480	4,276,224	232	2 128	12,8	32	576	288	12 or 16	2	4
FX140	100	250	192 x 84	63,168	126,336	126,336	1	,010,688	10,174,464	552	2 192	20,8	32	896	448	24	2	4

Defeat DCE and MBU

- Area Group Overview
 - Slice level control to frame level control
 - •Different level of control
 - •Timing impact for designs with large number of voters
- Assign Area Group
 - •By instance name with wild card INST "* TR0" AREA GROUP = "AG TR0":
 - •By clocking source: only capture synchronous elements
 - •TIMESPEC TS_clkin_TR0=PERIOD "clkin_TR0" TS_clkin_TR0;
 - •TIMEGRP "clkin_TR0" AREA_GROUP = "clk_TR0_AG";
- Range Assignment
 - •No range assignment simply default to slice level control
 - •Could increase routing time. Skip for design with lots of voters
 - AREA_GROUP "AG_TR0" RANGE=SLICE_X0Y0:SLICEX16Y16;
- Close Attribute
 - •Could increase routing time
 - •Avoid for clocking source based area group
- Example

AREA_GROUP "AG_TR0" PLACE=CLOSED; AREA GROUP "AG TR0" GROUP=CLOSED;

V4 Specific Primitives Usage Consideration

Primitives	Usage Consideration
SRL16	Must enable GLUT_MASK
LUTRAM	2. Constant data flush
FIFO	Empty and Full flag issues
	2. Check Xilinx solution 22462
Half Latch	No stuck error
	Alternative dedicated posts
	a.Set XIL_MAP_RETAIN_CONSTANT_FF_CTL
	b.Set XIL_PAR_VCC_HARD1_ONLY
DCM	Must disable GLUT_MASK
	Phase shift for divided output
DCI	IO or bank wide failure
	a.Stuck failure with Continuous and Freeze
	Robustness: As required, Continuous, Freeze
IDELAY	One IDELAY_CTL per bank
IDELAY_CTL	Single point, bank wide failure
STARTUP	1. Ground CLK, GSR, GTS
	2. Tie all USR* ports high

- Regional GLUT_MASK control to be supported in future software
- •Dedicated TIEOFF site support

•ISE: 9.2isp3
•TMRTool: TBD

Implementation Settings

- •XST:
 - •Change FSM Encoding Algorithm to
 - "Sequential"
- Enable Safe Implementation
- •MAP:
 - Disable global optimization (default)

General Design Considerations

- •TMRTool User Guide
 - Selection IO mitigation
 - •DCM divided clock phase matching challenge
 - Asynchronous elements
 - •Finite State Machine implementation impact
 - Timing
 - •Simulation and hardware verification and many others

Power Saving

- •TMR typically equates to 3X power consumption
- •Power Reduction option available for XST, Map, and PAR
- Average of 10~15% power reduction
 - •Minimize net capacitance
 - Optimize net capacitance routing for non timing critical nets
 - •Reprogram LUT to lower internal toggle
- •May decrease design footprint as shorter routes are used
- •Future Improvements
 - Clock Power reduction
 - Power aware clustering